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a b s t r a c t

Bending vibration of flexible structures can be suppressed passively using piezoelectric

electromechanical transducers and optimally tuned LR circuits. Since these systems

include both mechanical and electrical elements, the governing equations consist of

electrically coupled equations of motion. This paper describes a new method for

on the equilibrium of force principle and using an equivalent mechanical model of a

piezoelectric element. Both series and parallel LR circuits are considered in the

modeling approach. The optimum values for a mechanical vibration absorber can be

formulated by using the two fixed points method. However, exact optimal values for the

resistances of the LR circuits have not been formulated in the research literature thus

far, and approximate values have been used. Analytical formulations are derived in this

paper, and optimum values of the LR circuits are presented, not only in displacement,

but also in terms of velocity and acceleration. The effects of the stiffness of the adhesive

bond between the host structure and piezoelectric element, the dielectric loss in a

piezoelectric element, and the internal resistance of an inductor are considered in the

theoretical analysis. The effectiveness of the described analytical method is validated

through simulations and experiments.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Suppression of bending vibration using piezoelectric elements has attracted the attention of many researchers.
Typically, thin ceramic plates of piezoelectric material are used because this configuration requires minimal additional
space and they are easy to install. In contrast, vibration suppression devices such as mechanical vibration absorbers usually
need a significant amount of space and require a system level integration approach. Both active vibration control [1,2] and
passive vibration suppression [3–7] using piezoelectric elements have been investigated in the research literature. Several
hybrid methods [8–11] have also been proposed. Active vibration control is often more effective than passive vibration
suppression for a given device size, but they suffer from stability problems. In principle, passive methods are stable and
offer a higher degree of simplicity in their implementation. For these reasons, passive vibration suppression using tuned LR
circuits is the focus of this paper.

In previous works, it has been shown that both series and parallel LR circuits are effective in passively absorbing
vibration using piezoelectric elements [4,6]. Fundamental characterization of piezoelectric vibration absorbers and passive
ll rights reserved.
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LR circuits has been shown; however, significant work remains in specific areas. In particular, the characteristics of the
piezoelectric elements have not been thoroughly included in the derivation of governing equations, and as a result, the
mechanism for how the controlling force is generated by LR circuits has not been illustrated in detail. In addition, accurate
formulations for obtaining optimum values for the resistances, which agree with the two fixed points method [12], have
not been derived thus far. The differences in performance between series and parallel LR circuits should be investigated
more closely. In the research literature, the optimum LR values for the circuits were derived only with respect to
displacement even though the vibration of the host structure is often evaluated in terms of velocity or acceleration. Finally,
the results of pure theoretical analysis and experiment often do not agree well in the research literature, especially in
terms of the equivalent stiffness ratio of the piezoelectric element and the optimum value of resistance. To address these
issues, this paper derives the governing equations by using a new equivalent mechanical model of a piezoelectric element.
An equivalent model of a piezoelectric element proposed previously consists of frequency-dependent elements [13];
however, the proposed equivalent model consists of frequency-independent elements. Using the two fixed points method,
accurate formulations for the optimum values of the LR circuits are derived, not only in terms of displacement but also in
terms of velocity and acceleration. Using these formulations, the performance and optimum values of series and parallel LR
circuits are compared theoretically. Finally, the dielectric loss of a piezoelectric element, internal resistance of the inductor,
and stiffness of the adhesive bond are modeled theoretically. The effectiveness of the theoretical analysis is verified in
simulations and experiments.

2. Theoretical analysis

2.1. Piezoelectric constitutive equations and equivalent mechanical model

Piezoelectric elements generate electrical voltage when they are strained. This phenomenon is called the piezoelectric
effect. The inverse piezoelectric effect occurs when a piezoelectric element strains in response to an applied voltage.
A piezoelectric element can be used as both a sensor and an actuator by using these responses. Piezoelectric elements can
be categorized into several types according to the directions of polarization and strain. There is no essential difference
between them and general formulations will be developed throughout this work. A plate type of piezoelectric elements
used in this paper is usually used for bending vibration suppression. As shown in Fig. 1, directions of polarization and strain
of the plate type are perpendicular to each other. The piezoelectric constitutive equations are given as

S1 ¼ sE
11T1þd31E3, (1)

D3 ¼ d31T1þeT
33E3, (2)

where S1 is the strain, T1 is the stress, E3 is the electrical field, D3 is the electrical displacement, sE
11 is the elastic

compliance defined as the reciprocal of Young’s modulus, d31 is the piezoelectric constant, and eT
33 is the electrical

permittivity. The subscripts 1 and 11 denote the longitudinal direction, 3 and 33 denote the thickness direction, and 31
denote that the electrical displacement is the thickness direction and the strain is the longitudinal direction. The
superscripts E and T denote the values which are obtained under constant electrical field and constant stress,
respectively. The strain in width direction and the mass of the piezoelectric element are ignored here for simplicity.
Eqs. (1) and (2) describe the inverse piezoelectric effect and piezoelectric effect, respectively. Eqs. (1) and (2) can be
transformed into the following equations:

x1 ¼
1

Ep

lp
wptp

F1þd31
lp
tp

V3, (3)

q3 ¼ d31
lp
tp

F1þeT
33

lpwp

tp
V3, (4)

x1 ¼ lpS1, q3 ¼ lpwpD3, F1 ¼wptpT1, V3 ¼ tpE3, (528)
Electric field E3
Electric displacement D3

Stress T1
Strain S1

Fig. 1. Schematic diagram of a plate type piezoelectric element.
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where F1 is the force, V3 is the voltage, x1 is the displacement, q3 is the charge, Ep is Young’s modulus defined as
reciprocal of sE

11, lp, wp, and tp are the length, width, and thickness, respectively. Eqs. (3) and (4) are simplified as

x1 ¼
1

kp
F1þ

yp

kp
V3, (9)

q3 ¼
yp

kp
F1þCT

p V3, (10)

kp ¼ Ep
wptp

lp
, yp ¼ d31Epwp, CT

p ¼ e
T
33

lpwp

tp
, (11213)

where kp is the longitudinal mechanical stiffness, yp is the elemental electromechanical coupling coefficient, and CT
p is the

capacitance under constant stress. From Eqs. (9) and (10), capacitance under constant strain is defined as follows:

CS
p ¼ CT

p�
y2

p

kp
, (14)

where the superscript S denotes that the value is obtained under constant strain. Substituting Eq. (14) into Eq. (10) gives

q3 ¼
yp

kp
F1þ

y2
p

kp
þCS

p

 !
V3 ¼ ypx1þCS

pV3: (15)

From Eqs. (9) and (15), the equivalent mechanical model is drawn as Fig. 2(a). Here 1=C
S

p is the spring constant, yp is the

area ratio between the upper and right pistons, V3 is the force, q3 is the displacement. The values of C
S

p, yp, V3, and q3 are

equal to the values of CS
p , yp, V3, and q3, respectively. The left half of the equivalent model (a) is the mechanical stiffness given

by Eq. (11), and the right half shows the electrical properties of the transducer used to convert between mechanical and
electrical energy. The volume in the cylinder is constant, and the pressure in the cylinder is uniform. The cylinder is fixed, and
does not move. The equivalent mechanical model (a) can be transformed into the mechanical model (b). In this paper, the
equivalent mechanical models (a) and (b) shown in Fig. 2 are referred to subsequently as imaginary equivalent mechanical
model and the perfect equivalent mechanical model, respectively. The stiffness of the electrical part is written as

kz ¼
y2

p

CS
p

¼
y

2

p

C
S

p

¼
d2

31Ep

eT
33�d2

31Ep
kp: (16)

Eq. (16) implies that the stiffness of the electrical part is proportional to the stiffness of the mechanical part. The original
and equivalent mechanical models, when electrical impedance Ze is coupled to the piezoelectric element, are shown in
Fig. 3. The electrical impedance Ze is shown as the mechanical impedance Ze in the imaginary equivalent mechanical model
and transformed into the mechanical impedance Zm in the perfect equivalent mechanical model. The mechanical
impedance Zm is written as follows:

Zm ¼ Zey
2
p ¼ Zey

2

p : (17)

The lower end of the equivalent stiffness kz in Fig. 3(b) is free when the electrodes of the piezoelectric element are
shorted, and fixed when the electrodes are opened. When the electrodes are shorted, the electrical property of the
piezoelectric element does not have any physical effect.

2.2. Governing equations

An example model of for application of vibration suppression using a piezoelectric element and electrical impedance Ze

is shown in Fig. 4. In this case, the cantilever is the host structure that is experiencing vibration suppression, and it is
p

1
SC

kp

1
F

q3

�p:1

x1

V3

2
p

p
S

�
kz =

C
kp

F1 x1

q3

�p �pV3

Fig. 2. Equivalent mechanical models of a piezoelectric element: (a) imaginary model and (b) perfect model.
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q3
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x1

Ze

kz
kp

F1
x1

q3

�p
Zm

Fig. 3. Original and equivalent mechanical models of a piezoelectric element with electrical impedance: (a) original model, (b) imaginary model, and

(c) perfect model.

fe eZ
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tb

tp
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Piezoelectric element

Cantilever

Fig. 4. A model of vibration suppression using a piezoelectric element and electrical impedance.
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excited by external force fe. The piezoelectric element is attached to the host structure with an adhesive bond. Vibration
suppression using a tuned LR circuit can suppress only a single vibration mode. Therefore, the frequency range considered
in this analysis is around the natural frequency of the targeted vibration mode, and the other vibration modes are ignored
in theoretical analysis. In this case, their influences are small. The equation of motion when the electrodes of the
piezoelectric element are shorted is written as follows:

M €xþKx¼ Bf fe, (18)

M¼MbþMp ¼ 1, (19)

Mb ¼ rbwbtb

Z lb

0
c2 dx, (20)

Mp ¼ rpwptp

Z xr

xl

c2 dx, (21)

K ¼ KbþKp, (22)

Kb ¼ Ebwb

Z xl

0

Z ð1=2Þtb

�ð1=2Þtb

z2 @2c
@x2

 !2

dzdxþ

Z xr

xl

Z tn

�ðtb�tnÞ

z2 @2c
@x2

 !2

dzdxþ

Z lb

xr

Z ð1=2Þtb

�ð1=2Þtb

z2 @2c
@x2

 !2

dzdx

2
4

3
5, (23)

Kp ¼ Epwp

Z xr

xl

Z tnþ tp

tn

z2 @2c
@x2

 !2

dzdx, (24)

Bf ¼cðxf Þ, (25)

tn ¼
Ebwbt2

b�Epwpt2
p

2ðEbwbtbþEpwptpÞ
, (26)

where x is the modal displacement, rb and rp are the densities of the beam and the piezoelectric element, respectively,
Eb is Young’s modulus of the beam, lb, wb, tb are the length, width, and thickness of the beam, respectively, tn is the distance
between the neutral axis and the adverse side of the beam within the range where the piezoelectric element is attached, xl,
xr, xf are the distance between the clamped end and the left and right endpoints of the piezoelectric element and the point
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Fig. 5. Equivalent mechanical model of the targeted vibration mode with a short-circuited piezoelectric element.
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� �
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Fig. 6. Equivalent mechanical models of the targeted vibration mode with a piezoelectric element shunted by electrical impedance Ze: (a) imaginary

model and (b) perfect model.
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where the external force is added, respectively, c is the shape function of the targeted vibration mode. The x-axis is the
longitudinal direction and the origin is at the clamped end. The variable z denotes the distance from the neutral axis. Since
this cantilever is thin, the shear deformation and rotary inertia of the cantilever are ignored. As written in Eq. (19),
the shape function c used in this paper is normalized as the modal mass M becomes 1. When the electrodes are
shorted, the electrical property of the piezoelectric element does not affect the system. The equation of motion (18) is
derived from the simple mechanical model shown in Fig. 5. Here the cylinder is fixed in space, and the area ratio yk is
written as

yk ¼

ffiffiffiffiffiffi
Kp

kp

s
: (27)

Because kp and kz are in the proportional relation from Eq. (16), the imaginary and perfect equivalent mechanical
models when the electrodes of the piezoelectric element are shunted by the electrical impedance Ze are drawn as Fig. 6.
From these equivalent mechanical models, the governing equations are written as follows:

M €xþKxþY
Y
CS

p

x�
1

CS
p

q3

 !
¼ Bf fe, (28)

Ze _q3þ
1

CS
p

q3 ¼
Y
CS

p

x, (29)

where Y is the modal electromechanical coupling coefficient, and given as follows:

Y¼ ypyk: (30)

2.3. Passive vibration suppression using an LR circuit

Models for passive vibration suppression using series and parallel LR circuits are shown in Fig. 7. Electrical impedances
of the series and parallel LR circuits are written as

Ze ¼

joLþR ðseriesÞ,

joLR

joLþR
ðparallelÞ,

8><
>: (31)



e e

Fig. 7. Schematic diagrams of passive vibration suppression using series and parallel LR circuits: (a) series LR circuit and (b) parallel LR circuit.

M �
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M �
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Fig. 8. Perfect equivalent mechanical models of passive vibration suppression using series and parallel LR circuits: (a) series LR circuit and (b) parallel LR

circuit.
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where j is the imaginary unit, o is the excitation frequency, L is the inductance, and R is the resistance. The perfect
equivalent mechanical models are depicted in Fig. 8. Compared to a typical mechanical vibration absorber, the positions of
the dashpots are different. From Eqs. (28), (29) and (31), the nondimensional compliance is derived as

X
Xst
¼

1

�g2þ1þbGS
ðseriesÞ,

1

�g2þ1þbGP
ðparallelÞ,

8>>><
>>>:

(32)

GS ¼
�g2þ2jzSfg

f 2�g2þ2jzSfg
, (33)

GP ¼
�g2

f 2�g2þ2jzPfg
, (34)

Xst ¼
Bf Fe

K
, g ¼

o
O

, b¼
Y2

KCS
p

, (35237)

f ¼
oa

O
, zS ¼

R

2

ffiffiffiffiffi
CS

p

L

s
, zP ¼

1

2R

ffiffiffiffiffi
L

CS
p

s
, O¼

ffiffiffiffiffi
K

M

r
, oa ¼

ffiffiffiffiffiffiffiffi
1

LCS
p

s
, (38242)

Here X and Fe are the complex amplitude of x and fe, respectively. From Eq. (32), the magnitudes of the nondimensional
compliance uC, mobility uM, and accelerance uA are given as follows:

uC ¼
X
Xst

����
����¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4z2

S b2

c2þ4z2
S d2

S

vuut ðseriesÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ4z2

Pb2

c2þ4z2
Pd2

P

vuut ðparallelÞ,

8>>>>>>><
>>>>>>>:

(43)
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uM ¼
1

O

_X
Xst

�����
�����¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ða2þ4z2

S b2Þ

c2þ4z2
S d2

S

vuut ðseriesÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2ða2þ4z2

Pb2Þ

c2þ4z2
Pd2

P

vuut ðparallelÞ,

8>>>>>>><
>>>>>>>:

(44)

uA ¼
1

O2

€X
Xst

�����
�����¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4ða2þ4z2

S b2Þ

c2þ4z2
S d2

S

vuut ðseriesÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4ða2þ4z2

Pb2Þ

c2þ4z2
Pd2

P

vuut ðparallelÞ,

8>>>>>>><
>>>>>>>:

(45)

a¼ f 2�g2, (46)

b¼ fg, (47)

c¼ ð1�g2Þðf 2�g2Þ�bg2, (48)

dS ¼ fgð1�g2þbÞ, (49)

dP ¼ fgð1�g2Þ, (50)

_X ¼ joX, (51)

€X ¼�o2X: (52)

2.3.1. Optimum tuning in compliance

The two fixed points method [12] is common for finding the optimum natural frequency ratio and the resistance ratio of
the additional one degree of freedom system that minimizes the maximum amplitude in the frequency domain. The two
fixed points method is often used in optimum tuning of mechanical vibration absorbers because of its simplicity; it is also
applied to the optimum tuning of the series and parallel LR circuits in this paper.

Because the magnitude of the nondimensional compliance (43) has two fixed points that are independent of the
resistance ratio, the optimum natural frequency ratio is determined so that amplitudes at the two fixed points become
equal, and the optimum resistance ratio is derived so that amplitude is maximized at the two fixed points.

The optimum natural frequency ratio in the magnitude of the nondimensional compliance (43) is given for the
condition that the amplitudes at two fixed points—given by A and B—are equal

fCopt
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þb

p
ðseriesÞ,ffiffiffiffiffiffiffiffiffiffi

2�b
2

r
ðparallelÞ:

8><
>: (53)

The nondimensional frequencies of the two fixed points are given as

gA,B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þbÞ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þbÞ

2

rs
ðseriesÞ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18

ffiffiffi
b
2

rs
ðparallelÞ:

8>>>>><
>>>>>:

(54)

The amplitudes at the two fixed points are derived as follows:

uC9g ¼ gA,B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

bð1þbÞ

s
ðseriesÞ,

ffiffiffi
2

b

s
ðparallelÞ:

8>>>>><
>>>>>:

(55)
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The optimum resistance ratios at the two fixed points are given as

zSA,B ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aauþu2

Cccu

bbu�u2
CdSduS

s ����
g ¼ gA,B

ðseriesÞ,

zPA,B ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aauþu2

Cccu

bbu�u2
CdPduP

s ����
g ¼ gA,B

ðparallelÞ,

8>>>>><
>>>>>:

(56)

where the prime 0 denotes @=@g. zA and zB are not equal; however, the difference is minute. The arithmetic average,
geometric average, and root mean square of zA and zB can all be used as the optimum resistance ratio because the
difference between them is small enough to be ignored. In this paper, the optimum resistance ratio is defined by root mean
square because of simplicity of the expression

zCSopt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

SAþz
2
SB

2

s
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffi
3b

2þb

s
ðseriesÞ,

zCPopt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

PAþz
2
PB

2

s
¼

1

2

ffiffiffiffiffiffiffiffiffiffi
3b

2�b

s
ðparallelÞ:

8>>>>>><
>>>>>>:

(57)

As indicated by Eqs. (53) and (57), both optimum natural frequency ratio and optimum resistance ratio are determined
only by the equivalent stiffness ratio b.
2.3.2. Optimum tuning in mobility

Optimum values of the series and parallel LR circuits in terms of the magnitude of the nondimensional mobility can be
derived by the two fixed points method as well as in terms of the magnitude of the nondimensional compliance. The
optimum natural frequency ratio, the nondimensional frequencies of the two fixed points, the amplitudes at the two fixed
points, and the optimum resistance ratio are given as follows:

fMopt
¼
ð1þbÞ

ffiffiffiffiffiffiffiffiffiffiffi
2

2þb

s
ðseriesÞ,

1 ðparallelÞ,

8>><
>>: (58)

gA,B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þbÞ ð4þ3bÞ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð8þ5bÞ

ph i
2ð2þbÞ

vuut
ðseriesÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þbÞ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð8þbÞ

p
4

s
ðparallelÞ,

8>>>>>><
>>>>>>:

(59)

uM9g ¼ gA,B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þb

bð1þbÞ

s
ðseriesÞ,

ffiffiffi
2

b

s
ðparallelÞ,

8>>>>><
>>>>>:

(60)

zMSopt
¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð24þ24bþ5b2

Þ

ð1þbÞð2þbÞ2

s
ðseriesÞ,

zMPopt
¼

1

2

ffiffiffiffiffiffi
3b
2

r
ðparallelÞ:

8>>>><
>>>>:

(61)

2.3.3. Optimum tuning in accelerance

Optimum values of the series and parallel LR circuits for the magnitude of the nondimensional accelerance can be
derived by the two fixed points method as well as for the magnitude of the nondimensional compliance. The optimum
natural frequency ratio, the nondimensional frequencies of the two fixed points, the amplitudes at the two fixed points,
and the optimum resistance ratio are given as follows:

fAopt
¼

1þb ðseriesÞ,ffiffiffiffiffiffiffiffiffiffiffi
2þb

2

r
ðparallelÞ,

8><
>: (62)
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gA,B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þbÞ ð2þbÞ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2þbÞ

ph i
2

s
ðseriesÞ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þbÞ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð2þbÞ

p
2

s
ðparallelÞ,

8>>>>><
>>>>>:

(63)

uA9g ¼ gA,B
¼

ffiffiffiffiffiffiffiffiffiffiffi
2þb
b

s
ðseriesÞ,

ffiffiffiffiffiffiffiffiffiffiffi
2þb
b

s
ðparallelÞ,

8>>>>><
>>>>>:

(64)

zASopt
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b

2ð1þbÞ

s
ðseriesÞ

zAPopt
¼

1

2

ffiffiffiffiffiffi
3b
2

r
ðparallelÞ

:

8>>>><
>>>>:

(65)

2.3.4. Optimum values of the inductance and the resistance

Using the optimum natural frequency ratio fopt and the optimum resistance ratios zSopt
and zPopt

, the optimum values of
the inductance and the resistance are formulated as follows:

Lopt ¼
1

f 2
opt

1

CS
p

1

O2
, (66)

Ropt ¼

2zSopt

1

fopt

1

CS
p

1

O
ðseriesÞ,

1

2zPopt

1

fopt

1

CS
p

1

O
ðparallelÞ:

8>>>><
>>>>:

(67)

2.4. Comparison between series and parallel LR circuits

2.4.1. Performance comparison

The vibration suppression performance is evaluated based on the amplitude at the two fixed points because the
amplitude at these points is maximized. The amplitudes at the two fixed points for the compliance, mobility, and
accelerance are given by Eqs. (55), (60), and (64), respectively. The amplitudes are evaluated by using only the equivalent
stiffness ratio b as an independent variable. The relationship between the amplitude at the two fixed points and the
equivalent stiffness ratio b is shown in Fig. 9. The amplitude of a series LR circuit is smaller than that of a parallel LR circuit
for the compliance and mobility, and they are equal in the accelerance. The amplitudes of series and parallel LR circuits are
almost equal when the value of the equivalent stiffness ratio b is much smaller than 1.

The performance of a typical mechanical vibration absorber is evaluated based on the mass ratio. By contrast, the
performance of vibration suppression using piezoelectric elements uses the stiffness ratio because the electrical properties
of a piezoelectric element correspond to a spring in the equivalent mechanical model. However, the mass ratio can also be
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Fig. 9. The relationship between the amplitude at the two fixed points and the equivalent stiffness ratio: (a) in compliance, (b) in mobility, and (c) in

accelerance.
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used in vibration suppression with piezoelectric elements and LR circuits. From Eqs. (37), (41), and (66), the equivalent
mass ratio is given as follows:

m¼ LY2

M
¼

b
f 2
opt

: (68)

The optimum natural frequency ratio fopt approaches 1, and so the values of the mass and stiffness ratios are nearly equal.
The performances of mechanical and electrical vibration absorbers can be compared by using the mass and stiffness ratios.

From Eqs. (32)–(34), the stiffness and damping added by the additional electrical system are evaluated by bGS and bGP.
This paper defines added stiffness ratio gK and added damping ratio gD as follows:

gK ¼
ReðbGSÞ ðseriesÞ,

ReðbGPÞ ðparallelÞ,

(
(69)

gD ¼

ImðbGSÞ

2g
ðseriesÞ,

ImðbGPÞ

2g
ðparallelÞ:

8>>><
>>>:

(70)

As an example, gK and gD with b=0.030 are shown in Fig. 10. In this example, optimum values of LR circuits in the
compliance were adopted. The results of a typical mechanical vibration absorber (MVA) using the same stiffness ratio are also
shown in Fig. 10. Around the natural frequency, the added stiffness ratio of a series LR circuit is larger than that of a parallel LR
circuit, and the added damping ratios are nearly equal. These are the reasons that the performance of a series LR circuit is small
degree better than that of a parallel LR circuit in terms of the compliance and mobility. The added stiffness ratios approach b
when g becomes large. The added damping ratio of a series LR circuit approach bzSopt

=fopt when g becomes small. A series LR
circuit gives damping to the main system in the frequency range less than the natural frequency.

2.4.2. Comparison of optimum values of inductance

Inductance should be tuned so that the system has an electrical resonance. In this case, the resonance frequency of the
electrical system is nearly equal to the natural frequency of the main system. This represents an optimal condition. Because
the added stiffness of a series LR circuit is larger than that of a parallel LR circuit, as shown in Fig. 10(a), the optimum
natural frequency ratio of a series LR circuit is larger than that of a parallel LR circuit. As a result, the optimum values of the
inductance of a series LR circuit are smaller; however, the difference is usually small because of the smallness of the
equivalent stiffness ratio b.

2.4.3. Comparison of optimum values of resistance

In general, the equivalent stiffness ratio is much smaller than 1. In this case, the ratio of optimum values of the
resistances is given as

RSopt
: RPopt ¼ 2zSopt

1

fSopt

1

CS
p

1

O
:

1

2zPopt

1

fPopt

1

CS
p

1

O
� 4zSopt

zPopt
: 1, (71)

where RSopt
and RPopt

are the optimum resistances of series and parallel LR circuits, respectively, and fSopt
and fPopt

are the
optimum natural frequency ratios of series and parallel LR circuits, respectively. zSopt

and zPopt
are given by Eqs. (57), (61),

and (65), and they are usually much smaller than 1; therefore, RPopt
is much larger than RSopt

.
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Since the electrical resonance of the additional electrical system suppresses vibration of the host structure, the current
which flows back and forth between the inductance and the capacitance should be large. In the method using a series LR
circuit, the amplitude of electrical charge becomes large if the resistance is small. By contrast, the amplitude of electrical
charge for the method using a parallel LR circuit becomes large if the resistance is large. These are the reasons that RPopt is
much larger than RSopt

.

2.4.4. Summary of comparison

A series LR circuit is usually superior to a parallel LR circuit in terms of performance; however, there are some
exceptions. When the value of CS

p is large and RSopt
is small, the performance is greatly decreased because of the variation in

the value of the resistance. In other words, the performance of a parallel LR circuit is more robust than that of a series LR
circuit because RPopt

is very large. The same thing is adopted for the value of O. The circuit should be chosen in
consideration of not only performance but also robustness.
2.5. Dielectric loss of a piezoelectric element and internal resistance of an inductor

In practice piezoelectric elements dissipate some energy due to dielectric loss. This phenomenon is caused by the
relaxation time of polarization. As shown in Fig. 11(a), the dielectric loss can be expressed by a parallel resistance RC in the
equivalent circuit. RC is given as follows:

RC ¼
1

oCT
p tand

, (72)

where d is the dielectric loss factor. When RC ¼1, there is no energy loss.
Similarly, inductors also dissipate energy because they have not only inductance but also internal resistance. As shown

in Fig. 11(b), the internal resistance can be expressed by a series resistance RL.
If the dissipated energy due to RC and RL is very small, they are negligible. However, sometimes the influence of RC and

RL cannot be ignored. The models of passive vibration suppression, including RC and RL, are shown in Fig. 12. The influence
of RC and RL is identical to the resistances in the parallel and series LR circuits, respectively. The nondimensional
p
T

C RC

L

RL

Fig. 11. Equivalent circuit including the dielectric loss of the piezoelectric element and the internal resistance in the inductor: (a) dielectric loss of the

piezoelectric element and (b) internal resistance in the inductor.
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compliance then is given as

X
Xst
¼

1

�g2þ1þbGS2
ðseriesÞ,

1

�g2þ1þbGP2
ðparallelÞ,

8>>><
>>>:

(73)

GS2 ¼
�g2þ2jz1fg

1þ4z1zCð Þf 2�g2þ2j z1þzCð Þfg
, (74)

GP2 ¼
�g2þ2jzLfg

ð1þ4zLz2Þf 2�g2þ2jðzLþz2Þfg
, (75)

zC ¼
1

2RC

ffiffiffiffiffi
L

CS
p

s
, zL ¼

RL

2

ffiffiffiffiffi
CS

p

L

s
, z1 ¼ zSþzL, z2 ¼ zPþzC : (76279)

In this case, it is impossible to derive the optimum values of the circuit theoretically by use of the two fixed points method
because there are no fixed points in Eq. (73). However, the values can be estimated approximately. The practical models are
intermediates between the two ideal models shown in Fig. 7. Therefore, the optimum values in the practical models are expected
to be close to the optimum values in the ideal models. From Eqs. (53), (58), and (62), the optimum natural frequency ratios in the
practical models are expected to approach 1. The total resistance ratios in the practical models are defined as follows:

zT ¼
zSþzLþzC ðseriesÞ,

zPþzLþzC ðparallelÞ,

(
(80)

From Eqs. (57), (61), and (65), the optimum resistance ratios in the ideal models are almost equal although the values of
the resistances are significantly different. It suggests that the optimum resistance ratio does not depend on the position of
the resistance. Therefore, the total resistance ratios in the practical models should be tuned to be close to the optimum
resistance ratios in the ideal models. The value of the resistance, which should be used in the experiment, can be estimated
when the resistance ratios zC and zL are given. If zC+zL is larger than the optimum resistance ratio, LR circuits cannot be
optimally tuned. Therefore, piezoelectric elements and inductors with small resistance ratios should be chosen.

2.6. Effect of stiffness of adhesive bond

Piezoelectric elements are attached to the target with adhesive bonds. In the preceding subsections, piezoelectric
elements were assumed to be fixed to the host structure, and the effect of the adhesive bond was ignored. However, the
stiffness of the adhesive bond is generally not large enough to be ignored. The elemental imaginary and perfect equivalent
mechanical models including the stiffness of adhesive bonds are shown in Fig. 13. Here ka1 is the stiffness of the adhesive
bond, and xa1 is the displacement of the connecting point between the adhesive bond and the piezoelectric element. From
these equivalent mechanical models, the equilibria of force are given as follows:

F1 ¼ ka1ðx1�xa1Þ, (81)

ka1ðx1�xa1Þ ¼ kpxa1þkz xa1�
q3

yp

� �
, (82)

kz xa1�
q3

yp

� �
¼�ypV3: (83)
p

1
SC

kp

F1

q

�p : 1

x1

V3

ka1

xa1

2
p

p
S

�
kz =

C
kp

F1 x1

q

�p �pV3

ka1

xa1

3

3

Fig. 13. Elemental equivalent mechanical models with the stiffness of the adhesive bond: (a) imaginary model and (b) perfect model.
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Eqs. (81)–(83) are equivalently transformed into the following equations:

F1 ¼ kupx1þkuz x1�
q3

yup

� �
, (84)

kuz x1�
q3

yup

� �
¼�yupV3, (85)

where

kup ¼
ka1

ka1þkp
kp, (86)

kuz ¼
k2

a1

ðka1þkpþkzÞðka1þkpÞ
kz, (87)

yup ¼
ka1

ka1þkp
yp: (88)

The equivalent mechanical models are transformed into Fig. 14. Here Cup is given as

Cup ¼
ka1þkpþkz

ka1þkp
CS

p: (89)

From Eq. (86), the apparent elastic compliance is defined as follows on the assumption that length, width, and thickness
of the piezoelectric element are constant

s0 E11 ¼
ka1þkp

ka1
sE

11: (90)

Apparently the value of the elastic compliance is varied by the stiffness of the adhesive bond; however, the values of the
piezoelectric constant d31 and the electrical permittivity eT

33 are not varied at all. It is difficult to predict the value of ka1 accurately
because the value depends on not only the longitudinal shear strength of the adhesive bond but also the amount and the
distribution of the adhesive bond. From Eq. (90), the apparent Young’s modulus of the piezoelectric element is decreased, and the
decrease causes performance deterioration. Therefore, the longitudinal shear strength of the adhesive bond should be high.

2.7. Effect of restraint in width direction

In the preceding subsections, the properties of the piezoelectric element in the width direction are ignored for simplicity.
If Poisson’s ratio of the piezoelectric element is very small and the piezoelectric element is not bound in width direction,
there is no issue. However, Poisson’s ratio is generally not so small, and piezoelectric elements are usually restrained not
only in the longitudinal direction but also in the width direction by the adhesive bond. To formulate the properties of the
attached piezoelectric element accurately, the restraint in width direction must be taken into consideration. As shown in
Fig. 15(a), the restraint of the piezoelectric element in width direction can be expressed by the stiffness of the adhesive bond
ka2 as well as in longitudinal direction. Since the effect of the restraint in longitudinal direction has already been studied in
the preceding subsection, only the effect of the restraint in width direction should be investigated in this subsection. The
restraint model (in width direction only) is shown in Fig. 15(b). The piezoelectric constitutive equations are given as

S1 ¼ sE
11T1�npsE

11T2þd31E3, (91)

0¼
T2lptp

ka2
þwpð�npsE

11T1þsE
11T2þd31E3Þ, (92)

D3 ¼ d31T1þd31T2þeT
33E3, (93)
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Fig. 14. Simplified elemental equivalent mechanical models with the stiffness of the adhesive bond: (a) imaginary model and (b) perfect model.
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where vp is Poisson’s ratio. The piezoelectric element was assumed to be isotropic in longitudinal and width directions.
The subscript 2 denotes the width direction. Eqs. (91)–(93) are transformed as follows:

S1 ¼ s00E11T1þd0031E3, (94)

D3 ¼ d0031T1þe00T33E3, (95)

where

s00E11 ¼ sE
11�
ðnpsE

11Þ
2

sE
11þsa2

, (96)

d0031 ¼ d31 1þ
npsE

11

sE
11þsa2

 !
, (97)

e00T33 ¼ e
T
33�

d2
31

sE
11þsa2

, (98)

sa2 ¼
1

ka2

lptp

wp
: (99)

From Eqs. (96)–(98), the elastic compliance, the piezoelectric constant, and the electrical permittivity in Eqs. (1) and (2)
are turned into s00E11, d0031, and e00T33, apparently because of the restraint in width direction. Usually the changes are larger, and
all of these changes improve the performance of the piezoelectric elements. It is also difficult to obtain the accurate value
of ka2 theoretically; however, it can theoretically be said that piezoelectric elements should also be fixed in the width
direction.

3. Validation of theoretical analysis by simulation and experiment

3.1. Validation of optimum value of resistance

To validate the effectiveness of the new formulations of the resistance, simulations were carried out. The simulated
magnitudes of the nondimensional compliance using series and parallel LR circuits with b=0.01000 are shown in Fig. 16.
Here zopt denotes the optimum resistance ratio derived in this paper, and zold denotes the resistance ratio adopted as an
approximate optimum resistance ratio in previous papers [3–6]. The values of the resistance ratios are shown in Table 1.
It is shown that the optimum resistance ratios formulated in this paper are superior to previous ones.

In this paper, the optimum resistance ratios were defined by root mean square of zA and zB. The values of the resistance
ratios derived by arithmetic average, geometric average, and root mean square are written in Table 2. It is shown that the
results of three kinds of averages are almost equal, and these differences do not have influence on the frequency response
functions.

3.2. Validation of optimum values in mobility and accelerance

3.2.1. Experimental apparatus

A schematic diagram of the experimental apparatus used in this study is shown in Fig. 17. The material properties of the
apparatus are written in Tables 3 and 4. Here macc is the mass of the accelerometer and xacc is the location of the
accelerometer. Two pieces of piezoelectric elements were attached to the cantilever; one was used for vibration
suppression and the other for excitation of the beam. Both conductive and non-conductive adhesive bonds were used. The
conductive type was used to simplify wiring, and the non-conductive type for fixing and electrical insulation. Specifically,



Table 1
The resistance ratios used in the simulations shown in Fig. 16.

zold zopt

Series LR circuit 0.07036 0.06108

Parallel LR circuit 0.07089 0.06139

Table 2
The resistance ratios derived by arithmetic average, geometric average, and root mean square.

Point A Point B Arithmetic average Geometric average Root mean square

Series LR circuit 0.06320 0.05890 0.06105 0.06101 0.06108

Parallel LR circuit 0.06211 0.06066 0.06139 0.06138 0.06139

Fig. 17. Schematic diagram of the experimental apparatus.
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a drop of the conductive adhesive bond was placed on the center of the piezoelectric elements and it was surrounded by
the non-conductive adhesive bond. An inductor made by a generalized impedance converter was used in this experiment
because the size of an actual coil is too large. In this experiment, the fundamental vibration mode of the cantilever was
suppressed. The equivalent stiffness ratio, the capacitance of the piezoelectric element, the modal stiffness, and the modal
damping coefficient, which were experimentally measured, are shown in Table 5 [14]. Here, the superscript x denotes that
the values were obtained experimentally. The modal stiffness were derived as

Kx ¼ ð2pFx
S Þ

2, (100)

where Fx
S is the natural frequency of the fundamental vibration mode when the electrodes of the piezoelectric element are

shorted in the experiment. The electromechanical coupling coefficient derived by Eq. (37) and the modal mass are also
written in Table 5. The experimental result of the magnitude of the nondimensional compliance with short circuit is shown
in Fig. 18.



Table 3
Material properties of the cantilever and the accelerometer.

Cantilever

Length lb 0.280 m

Width wb 0.0500 m

Thickness tb 0.00300 m

Density rb 7900 kg/m3

Young’s modulus Eb 2.06�1011 N/m2

Accelerometer

Mass macc 0.20 g

Location xacc 0.270 m

Table 4
Material properties of the piezoelectric elements.

Length lp 0.0320 m

Width wp 0.0220 m

Thickness tp 0.000230 m

Density rp 8050 kg/m3

Elastic compliance sE
11

1.55�10�11 m2/N

Young’s modulus Ep 6.45�1010 N/m2

Piezoelectric constant d31 2.30�10�10 C/N

Electrical permittivity eT
33

2.35�10�8 F/m

Poisson’s ratio vp 0.30

Dielectric loss factor d 0.020

Location of the piezoelectric element for vibration suppression (x‘, xr) (0.0050, 0.0370) m

Location of the piezoelectric element for excitation (x‘, xr) (0.0400, 0.0720) m

Table 5
Experimentally measured parameters of the cantilever with the two piezoelectric elements.

Equivalent stiffness ratio bx 0.00411

Capacitance Cp
x 0.0480 mF

Electromechanical coupling coefficient Yx 0.00273 N/V

Modal stiffness Kx 37,800 N/m

Modal damping coefficient Dx 0.567 N s/m

Modal mass M 1.00 kg
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Fig. 18. The experimental result of the magnitude of the nondimensional compliance with short circuit.
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3.2.2. Simulated and experimental results

The simulated and experimental magnitudes of the nondimensional compliance, mobility, and accelerance using
optimum values in compliance, mobility, and accelerance, respectively, are shown in Figs. 19 and 20, respectively. The
values of the material properties used in the simulations are the experimental ones written in Table 5. The damping
coefficient of the cantilever was ignored in the theoretical analysis; however, it was included in these simulations. In the
mobility and the accelerance, the results using the LR circuit which was tuned optimally in terms of the compliance are
also shown. The theoretical optimum values and the experimental values of the LR circuit are listed in Tables 6 and 7,
respectively. These frequency response functions change sensitively depending on the value of the inductance. The
magnitude relation of the inductance values in the experiment agrees well with the simulated ones. The reason why the



18

20

22

24

26

28

29

u C
 (

dB
)

u M
 (

dB
)

u A
 (

dB
)

18

20

22

24

26

28

18

20

22

24

26

28

18

20

22

24

26

28

u C
 (

dB
)

u M
 (

dB
)

u A
 (

dB
)

18

20

22

24

26

28

18

20

22

24

26

28

Tuned in compliance Tuned in compliance

Tuned in mobility Tuned in mobility

Tuned in accelerance Tuned in accelerance

Tuned in 
compliance

Tuned in 
compliance

Tuned in 
compliance

Tuned in 
compliance

30 31 32 33
Frequency (Hz)

29 30 31 32 33
Frequency (Hz)

29 30 31 32 33
Frequency (Hz)

29 30 31 32 33
Frequency (Hz)

29 30 31 32 33
Frequency (Hz)

29 30 31 32 33
Frequency (Hz)

Series Parallel

Series Parallel

Series Parallel

Fig. 20. Experimental results of magnitudes of the nondimensional compliance, mobility, and accelerance using the optimum values: (a) compliance with

series LR circuit, (b) compliance with parallel LR circuit, (c) mobility with series LR circuit, (d) mobility with parallel LR circuit, (e) accelerance with series

LR circuit, and (f) accelerance with parallel LR circuit.

Table 6
Theoretical optimum values of the LR circuit in compliance, mobility, and accelerance.

Compliance Mobility Accelerance

Series LR circuit

Lopt 549 H 548 H 547 H

Ropt 8.39�103 O 8.37�103 O 8.36�103 O

Parallel LR circuit

Lopt 552 H 551 H 550 H

Ropt 1.36�106 O 1.36�106 O 1.36�106 O
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Table 7
Experimental values of the LR circuit in compliance, mobility, and accelerance.

Compliance Mobility Accelerance

Series LR circuit

L 553 H 552 H 550 H

R 5.10�103 O 5.10�103 O 5.10�103 O

Parallel LR circuit

L 558 H 555 H 555 H

R 2.41�106 O 2.41�106 O 2.41�106 O

Table 8
Values of RC, RL, and various resistance ratios in the experiment and theoretical optimum resistance ratios.

Series LR Parallel LR

Experimental values

RC 3.61�106 (3.6�106) O
RL 37 O
zC 0.0149 0.0149

zL 0.00017 0.00017

zS 0.0238 –

zP – 0.0224

zT 0.0389 0.0375

Theoretical optimum values

zopt 0.0392 0.0393
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values of the inductance are large is that the capacitance value of the piezoelectric element is small. The theoretical
optimum values and the experimental ones of the resistance are much different. The detail is described in the following
subsection. It can be said that optimum values in the proper frequency response function should be adopted.

3.3. Various resistance ratios in experiment

The difference between the theoretical and experimental resistance values in Tables 6 and 7 is due to the dielectric loss
of the piezoelectric element and the internal resistance of the inductor made using the generalized impedance converter.
RC and RL measured experimentally are written in Table 8. Here RC was measured at o¼ ðKxÞ

1=2. RC obtained by Eq. (72) and
o¼ ðKxÞ

1=2 is also written in Table 8 in parentheses. The various resistance ratios in the experiment and the theoretical
optimum resistance ratios are given in Table 8. Only the values with respect to compliance are listed because the difference
among compliance, mobility, and accelerance is small. The experimental total resistance ratios and the theoretical
optimum resistance ratios agree well. These results imply that the optimum resistance value in the experiment can be
estimated and dielectric loss of piezoelectric elements should be taken into consideration when the material of the
piezoelectric elements is determined.

3.4. Investigation of stiffness of adhesive bond in experiment

To investigate the effect of the adhesive bond, a calculation model was constructed as shown in Fig. 21. The accurate
curvature of the mode shape of the cantilever can be derived by the calculation model. The cantilever was divided into 280
segments, and the equivalent mass and stiffness of each segment were theoretically obtained. The stiffness and the mass of
the two piezoelectric elements and the mass of the accelerometer were taken into consideration. The theoretically
calculated equivalent stiffness ratio bc, capacitance Cc

p, modal stiffness Kc, and modal electromechanical coupling
coefficient Yc using various ka1 and ka2 are shown in Fig. 22. The material parameters listed in Tables 3 and 4 were used in
this calculation. Note that the axes of Cc

p are reversed. The results show that the equivalent stiffness ratio and the
capacitance of the piezoelectric element are greatly affected by the stiffness of the adhesive bond. Those values are varied
significantly around ka1 ¼ kp ¼ 1:02� 107 N=m and ka2 ¼ kp2 ¼ 2:16� 107 N=m. Here

kp2 ¼ Ep
lptp

wp
: (101)
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The theoretically calculated combinations of ka1 and ka2, which satisfy either bc=0.00411 or Cc
p ¼ 0:0480mF, are shown

in Fig. 23. The values of the intersection point are ka1 ¼ 1:26� 108 N=m and ka2 ¼ 7:76� 107 N=m. These are the estimated
values of ka1 and ka2 in the experimental apparatus. Both ka1 and ka2 are larger than kp and kp2, respectively; however, the
value of the equivalent stiffness ratio can still be improved by using stiffer adhesive bonds.

The reason why ka2 is smaller than ka1 is that the distribution of the adhesive bond were not uniform in the
experimental apparatus. An extreme example is shown in Fig. 24. In this example, the piezoelectric element is restrained
only in the longitudinal direction. By comparison, ka1 and ka2 become the same value if the adhesive bond is uniformly
spread on the entire piezoelectric element. Since the difference between the estimated values of ka1 and ka2 is not so large,
it is reasonable to suppose that the theoretical analysis with respect to adhesive bonds is effective.
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Fig. 22. Theoretically calculated parameters of the cantilever with the piezoelectric elements using various ka1 and ka2: (a) equivalent stiffness ratio,

(b) capacitance, (c) modal stiffness, and (d) electromechanical coupling coefficient.

Fig. 21. Calculation model of the cantilever with the piezoelectric elements to derive the mode shape.
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Fig. 23. Theoretically calculated results of the combinations of ka1 and ka2 which satisfy bc=0.00411 and Cc
p ¼ 0:0480mF, respectively.

K. Yamada et al. / Journal of Sound and Vibration 329 (2010) 5036–50575056
4. Conclusion

The governing equations for passive vibration suppression with series and parallel LR circuits were derived using the
new equivalent mechanical model of a piezoelectric element. The optimum values of the series and the parallel LR circuits
were formulated by using the two fixed points method not only in terms of compliance but also in terms of mobility and
accelerance. The difference between the series and parallel LR circuits was investigated theoretically. The effects of the
dielectric loss of the piezoelectric elements, the internal resistance of the inductor, and the stiffness of adhesive bonds
were theoretically investigated. The theoretical analysis was validated through numerical simulations and experiments.
The performance of the passive vibration suppression technique using LR circuits was determined based on the value of the
equivalent stiffness ratio as well as the mass ratio in typical mechanical vibration absorbers. The series LR circuit is
superior to the parallel one in terms of compliance and mobility. However, the parallel LR circuit is superior to the series
one in terms of robustness with respect to the variation of the resistance. Therefore, it is necessary to use two kinds of LR
circuits properly according to the host structure and the piezoelectric element. This work demonstrated that the total
resistance ratio, which includes the dielectric loss of the piezoelectric element and the internal resistance of the inductor,
should be tuned to be equal to the optimum resistance ratio, and an adhesive bond with high longitudinal shear strength
should be used.
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